Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
2.
AJNR Am J Neuroradiol ; 42(4): 632-638, 2021 04.
Article in English | MEDLINE | ID: covidwho-1016049

ABSTRACT

BACKGROUND AND PURPOSE: Patients infected with the Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) can develop a spectrum of neurological disorders, including a leukoencephalopathy of variable severity. Our aim was to characterize imaging, lab, and clinical correlates of severe coronavirus disease 2019 (COVID-19) leukoencephalopathy, which may provide insight into the SARS-CoV-2 pathophysiology. MATERIALS AND METHODS: Twenty-seven consecutive patients positive for SARS-CoV-2 who had brain MR imaging following intensive care unit admission were included. Seven (7/27, 26%) developed an unusual pattern of "leukoencephalopathy with reduced diffusivity" on diffusion-weighted MR imaging. The remaining patients did not exhibit this pattern. Clinical and laboratory indices, as well as neuroimaging findings, were compared between groups. RESULTS: The reduced-diffusivity group had a significantly higher body mass index (36 versus 28 kg/m2, P < .01). Patients with reduced diffusivity trended toward more frequent acute renal failure (7/7, 100% versus 9/20, 45%; P = .06) and lower estimated glomerular filtration rate values (49 versus 85 mL/min; P = .06) at the time of MRI. Patients with reduced diffusivity also showed lesser mean values of the lowest hemoglobin levels (8.1 versus 10.2 g/dL, P < .05) and higher serum sodium levels (147 versus 139 mmol/L, P = .04) within 24 hours before MR imaging. The reduced-diffusivity group showed a striking and highly reproducible distribution of confluent, predominantly symmetric, supratentorial, and middle cerebellar peduncular white matter lesions (P < .001). CONCLUSIONS: Our findings highlight notable correlations between severe COVID-19 leukoencephalopathy with reduced diffusivity and obesity, acute renal failure, mild hypernatremia, anemia, and an unusual brain MR imaging white matter lesion distribution pattern. Together, these observations may shed light on possible SARS-CoV-2 pathophysiologic mechanisms associated with leukoencephalopathy, including borderzone ischemic changes, electrolyte transport disturbances, and silent hypoxia in the setting of the known cytokine storm syndrome that accompanies severe COVID-19.


Subject(s)
Acute Kidney Injury/diagnostic imaging , COVID-19/complications , Intensive Care Units , Leukoencephalopathies/complications , Acute Kidney Injury/complications , Adult , Diffusion Magnetic Resonance Imaging , Humans , Leukoencephalopathies/diagnostic imaging , Magnetic Resonance Imaging/methods , Male , Middle Aged , SARS-CoV-2 , White Matter/diagnostic imaging
3.
Int J Neurosci ; 132(11): 1123-1127, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-983893

ABSTRACT

BACKGROUND: The complications of coronavirus disease 2019 (COVID-19), the clinical entity caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), are not limited to the respiratory system. Leukoencephalopathy with microbleeds is increasingly seen in patients with COVID-19. New information is needed to delineate better the clinical implications of this infectious disease. CASE REPORT: A 46-year-old man with confirmed SARS-CoV-2 infection was admitted to the intensive care unit (ICU) with severe COVID-19. After transfer to the general wards, the patient was noted drowsy, disorientated, with slow thinking and speech. A brain MRI showed bilateral symmetrical hyperintense lesions in the deep and subcortical whiter matter, involving the splenium of the corpus callosum, as well as multiple microhemorrhages implicating the splenium and subcortical white matter. No contrast-enhanced lesions were observed in brain CT or MRI. CSF analysis showed no abnormalities, including a negative rtRT-PCR for SARS-CoV-2. An outpatient follow-up visit showed near-complete clinical recovery and resolution of the hyperintense lesions on MRI, without microbleeds change. CONCLUSION: We present the case of a survivor of severe COVID-19 who presented diffuse posthypoxic leukoencephalopathy, and microbleeds masquerading as acute necrotizing encephalopathy. We postulate that this kind of cerebral vasogenic edema with microbleeds could be the consequence of hypoxia, inflammation, the prothrombotic state and medical interventions such as mechanical ventilation and anticoagulation.


Subject(s)
Brain Infarction , COVID-19 , Leukoencephalopathies , Humans , Male , Middle Aged , Anticoagulants , Cerebral Hemorrhage/diagnostic imaging , Cerebral Hemorrhage/etiology , COVID-19/complications , COVID-19/diagnosis , Leukoencephalopathies/etiology , Leukoencephalopathies/complications , SARS-CoV-2 , Brain Infarction/etiology
4.
Stroke ; 51(9): 2649-2655, 2020 09.
Article in English | MEDLINE | ID: covidwho-695153

ABSTRACT

BACKGROUND AND PURPOSE: We conducted this study to investigate the prevalence and distribution of cerebral microbleeds and leukoencephalopathy in hospitalized patients with coronavirus disease 2019 (COVID-19) and correlate with clinical, laboratory, and functional outcomes. METHODS: We performed a retrospective chart review of 4131 COVID-19 positive adult patients who were admitted to 3 tertiary care hospitals of an academic medical center at the epicenter of the COVID-19 pandemic in New York City from March 1, 2020, to May 10, 2020, to identify patients who had magnetic resonance imaging (MRI) of the brain. We evaluated the MRIs in detail, and identified a subset of patients with leukoencephalopathy and/or cerebral microbleeds. We compared clinical, laboratory, and functional outcomes for these patients to patients who had a brain MRI that did not show these findings. RESULTS: Of 115 patients who had an MRI of the brain performed, 35 (30.4%) patients had leukoencephalopathy and/or cerebral microbleeds. Patients with leukoencephalopathy and/or cerebral microbleeds had neuroimaging performed later during the hospitalization course (27 versus 10.6 days; P<0.001), were clinically sicker at the time of brain MRI (median GCS 6 versus 14; P<0.001), and had higher peak D-dimer levels (8018±6677 versus 3183±3482; P<0.001), lower nadir platelet count (116.9±62.2 versus 158.3±76.2; P=0.03), higher peak international normalized ratio (2.2 versus 1.57; P<0.001) values when compared with patients who had a brain MRI that did not show these findings. They required longer ventilator support (34.6 versus 9.1 days; P<0.001) and were more likely to have moderate and severe acute respiratory distress syndrome score (88.6% versus 23.8%, P<0.001). These patients had longer hospitalizations (42.1 versus 20.9 days; P<0.001), overall worse functional status on discharge (mRS 5 versus 4; P=0.001), and higher mortality (20% versus 9%; P=0.144). CONCLUSIONS: The presence of leukoencephalopathy and/or cerebral microbleeds is associated with a critical illness, increased mortality, and worse functional outcome in patients with COVID-19.


Subject(s)
Cerebral Hemorrhage/complications , Coronavirus Infections/complications , Leukoencephalopathies/complications , Pneumonia, Viral/complications , Aged , COVID-19 , Cerebral Hemorrhage/diagnostic imaging , Cerebral Hemorrhage/epidemiology , Coronavirus Infections/diagnostic imaging , Coronavirus Infections/epidemiology , Critical Illness , Female , Fibrin Fibrinogen Degradation Products/analysis , Hospitalization , Humans , International Normalized Ratio , Length of Stay , Leukoencephalopathies/diagnostic imaging , Leukoencephalopathies/epidemiology , Magnetic Resonance Imaging , Male , Middle Aged , New York City/epidemiology , Pandemics , Platelet Count , Pneumonia, Viral/diagnostic imaging , Pneumonia, Viral/epidemiology , Prevalence , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Disease, Chronic Obstructive/epidemiology , Respiration, Artificial/statistics & numerical data , Retrospective Studies , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL